If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2-28x=0
a = 18; b = -28; c = 0;
Δ = b2-4ac
Δ = -282-4·18·0
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-28)-28}{2*18}=\frac{0}{36} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-28)+28}{2*18}=\frac{56}{36} =1+5/9 $
| 1+2t–2–t–3+3t=0 | | x=-x+1* | | 5(x–2)–(x–2)=0 | | -10(s+3)=-56 | | 5(x–2)–(x–2)=0 | | ז. 5(x–2)–(x–2)=0 | | 5x+8=23 | | 2x-5x+8=12-3x-9 | | −10x+7=27 | | 4y+4y+2y=180 | | −10x+7=27−10x+7=27 | | -25-6n=9+7n | | -5-4v=5v+13 | | –3(2x+1)=9 | | 8z+4=6z-16 | | 5h=2h+18 | | 4x+75=370 | | c=1.85 | | 5e=3e+14 | | 7c–3=3c+25 | | 7n-131=2n-6 | | T(n+1)=T(n)+1 | | 3+38x=28x+5 | | t2+20t-96=0 | | 3(x–2)-2(x–3)=1 | | 3(x–2)-2(x–3)=1 | | ד. 3(x–2)-2(x–3)=1 | | x+(x/2)=137.25 | | 8x+42+4x+6=180 | | 2b+3-9=-11 | | 312-5x=270 | | 6x=10=22 |